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Soft modes and the counter-rotating terms of the Dicke 
model 
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The University of Manchester Institute of Science and Technology, PO Box 88, Manches- 
ter M 60 1 QD, UK 

Received 22 July 1977 

Absbprr The presence of counter-rotating terms in the extended Dicke Hamiltonian 
alters the temperature dependence of the soft-mode frequencies near the critical 
temperature. At resonance and in the long-wave limit, frequency doubling does not occur. 
The zero-temperature limit of excitation energies close to equilibrium is satisfactory. 

Several authors have discussed the mode softening behaviour in the Dicke model as 
the system is cooled towards the phase transition temperature. Sadreev and Slavinskii 
(1976) maintain the field in a coherent state and consider fluctuations in the atomic 
variables alone. The work of Gilmore (1977) applies to the region above the critical 
temperature where fluctuations in the atomic inversion operators u 3  do not affect the 
results. It would be satisfactory to have a calculation for ‘temperature-dependent’ 
energy levels of the model which could be checked against the established ones in the 
T = 0 limit. There is too the question of the sensitivity of the critical behaviour to 
details of the interaction terms of the Hamiltonian. Mode softening goes as ( T -  
TC)’” in certain ferroelectrics (Cochran 1973) in contrast to the linear dependence 
found for the Dicke model in the rotating wave approximation (RWA). 

The first step is to adapt Bogolubov’s method (Gilmore and Bowden 1976) to the 
extended Dicke model for which the Hamiltonian is (Thompson 1977): 

(1) 
iLl + e-ik.l) H = o k a b k  +c W w 3 ( 1 )  + 2gal(l)(ak e 

1 

where [u1, a 2 1  = iu3 etc, while all other symbols have their normal meaning. The 
thermodynamically equivalent Hamiltonian may be written 

We shall not need the c-number HO in this article. For brevity, one mode k is 
considered and we take p to be real. Since HI and H2 commute, it is easy to compute 
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thermal averages with HL. The parameters p, VI are chosen so that 

(ak >a = p, (a(l))L? = Vl (5 )  

and it is well known that this choice minimises the free energy -p- '  In Tr e-BHL. We 
find 

Okp = - 2g '$' vl e-"" (6) 

W O V ~  = 4gSip COS k 1 

where 

sl = (r3(l))@ = -4 cos 01 tanh (4p00 sec el)  
and 

tan = 4gpuO' cos k .  1. (9) 
Each angle 0, measures the rotation about the two-axis needed to diagonalise the 
summand labelled by I in (4) .  After rejecting the solutions p = 0 = vl which describe 
the disordered state, we obtain 

1 = 4g20010; '  cos' k .  I cos 0l tanh ($300 sec 01) (10) 
1 

and the critical temperature is given by 

1 = 4 g 2 0 0 1 0 i 1  tanh ($3~00) cos2 k. 1. 
I 

At zero temperature, equations (6)-( 10) reduce to those found in the canonical 
transformation theory. The last result we require is that because of the simple 
structure of H2, 

(az ( l>>a  = 0. 

f " a k  - p ;  f l u )  = m ( l ) -  w ;  f 3 0 )  = cr3 ( l )  -SI .  

Close to thermal equilibrium, we can introduce fluctuation operators: 

Solution of the linearised equations of motion for these leads to the desired 'tem- 
perature-dependent' mode frequencies. From (1)' Heisenberg's equations give 
(ignoring non-linear terms in the fluctuations) 

if = O k f  + 2g 1 f l ( l )  e-ik*' 

fdl) = - w n ( l )  

I 

b2(l) = oofl(l) -4gpf3(1) cos k. I - 2 g s ~ f  e'"' +f t e - i l l  ) 

f 3 ( l )  = 4gp COS k . 1 ~ 2 ( l ) .  

Below the critical temperature it would be incorrect to ignore the f 3 ( 1 ) .  After eli- 
mination of f 3 ( l ) ,  ~ ' ( 1 )  and their derivatives from the set of equations, we find that 
solutions with time dependence exp ( S t )  require that 

sec2 e,) f 1 ( l )  = - 2goosr(f eiL' + f +  e-ik*'). (E' - 
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The operators fl(l) may now be eliminated, leaving a pair of equations in f and f t  
whose determinant implies the secular equation: 

E 2  - (U& + Sp(E, o))2 +$(E, 2k) = 0 (12) 

where 

Upon setting E = 0 in (12) it is found that for consistency p must satisfy (1 1). 

calculation gives the secular equation: 
In the case of two field modes with wavevectors k and -k in H, a parallel 

E2-wf=2w&(Sp(E, O)*Sp(E,  2k)) (14) 

which has the correct limit as T+O (Thompson 1977). Both (12) and (14) predict a 
quasi-continuous band of localised modes which may be interpreted as position- 
dependent Stark-shifted levels. These shifts are temperature dependent and vanish 
with the coherent field as the temperature rises to its critical value. A simple graphical 
argument (Thompson 1977) gives these energies as wo sec 81 approximately, a 
conclusion which generalises a result of Sadreev and Slavinskii (1976). 

For long waves, (1 2) becomes 

(E2-w:) (E2-w;)  = 4g2Nw00k tanh (;BOO) T > T ,  
(15) 

( E 2 - o f ) ( E 2 - w ; T 2 )  = o x  T < T ,  

with 7 satisfying 

= 4g2NoG1w;’ tanh (@oo~).  

On resonance (wk = 00)  the solutions at T, are E = 0, f f i w o  showing that frequency 
doubling (Sadreev and Martynov 1976) is a feature of the RWA. Similarly, the 
temperature dependence of the soft-mode frequency near T, is proportional to 
IT-T,I’”. Figure 1 shows the solutions of (15) for resonance and 4g2N/w00& = 1.5. 
Models in which the counter-rotating terms are given a fractional weighting x have 
been investigated in the long-wave limit. The dispersion relation is again a quadratic 

2 / m a  
F’ignre 1. Temperature dependence of mode frequency. 
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in E* giving a half-power law for the soft mode near T, when x # 0. Just above the 
critical temperature, 

E’ e cl(T - Tc) + c ~ ( T -  T,)’+. . . 
but the coefficient c1 tends to zero with x. This means that for small values of x ,  the 
half-power law region will be very close to T,, the linear dependence becoming 
apparent farther from the transition. The extent of the half-power law region is an 
indicator of the importance of counter-rotating terms in these models of atom-field 
interactions near equilibrium. 

I thank the referee for suggesting some improvements to the manuscript. 
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